On class (BQ) Operators of order n.

WANJALA VICTOR1, OYOMBE ALUALA2

^{1, 2} Department of Mathematics and computing, Kibabii University.

Abstract- In this paper, we extend the class of (BQ) operators acting on a complex Hilbert space H to the class of (BQ) of order n. An operator if $T \in B(H)$ is said to belong to class (BQ) of order n if $T^{*2n}T^2$ commutes with $(T^{*n}T)^2$ that is $[T^{*2n}T^2, (T^{*n}T)^2] = 0$. We examine properties that this class is honored to have. We examine the relation of this class to that of class (Q) order n.

Indexed Terms- Class (BQ) of order n, Class (BQ) operator, Normal operator of order n.

I. INTRODUCTION

Throughout this paper , H denotes the usual Hilbert space over the complex field and B(H) the Banach algebra of all bounded linear algebra on an infinite dimensional separable Hilbert space H . An operator $T\in B(H)$ is said to be class (Q) if T *²T ² = (T *T)² (1), class (Q) of order n if T *²nT ² = (T *nT)², class (BQ) if T *²T ²(T *T)² = (T *T)²T *²T ² (5). A conjugation on a Hilbert space H is an anti-linear operator C from Hilbert space H onto itself that satisfies

Cx, Cyi = hx, yi for every x, $y \in H$ and $C^2 = I$. An operator T is said to be complex symmetric if T = CT *C.

II. MAIN RESULTS

Theorem 1. Let $T \in B(H)$ be such that it's a (BQ) of order n, then the following are also equivalent; (i). λΤ for any real (ii). Any $S \in B(H)$ that is unitarily equivalent to T. (iii). The restriction T-M to any closed subspace M of H. Proof. (i). The proof (ii). Let $S \in B(H)$ be unitarily equivalent to T, then there exists unitary operator U B(H) S = U *TU and $S* = U *T *^nU$. Since $T \in B(Q)$ of order

we $T^{*2n}T^{2}(T^{*n}T)^{2} = (T^{*n}T)^{2}T^{*2n}T^{2}$, hence $S^{*2n}S^2(S^{*n}S)^2 = UT^{*2n}U^*UT^2U^*(UT^{*n}U^*UTU^*)^2$ $= UT *^{2n}U *U *T ^{2}U *UT *^{n}U *UT *^{n}U *UTU *UTU *$ UT $^{2}(T$ 2**T** J U $*nT)^2T$ and $(S^{*n}S)^2S^{*2n}S^2 = (UT^{*n}U^{*}UTU^{*})^2UT^{*2n}U^{*}UT^{2}U^{*}$ $= UT *^{n}U *UTU *UT *^{n}U *UTU *UT *^{2}U *UT ^{2}U *UT ^{2}U$ *2nU $*^nTT$ $*^nTT$ UT $*^{2n}T$ =U(T $*^{n}T)^{2}$ IJ Thus S is unitarily equivalent to T.

(iii) . If T is in class (BQ) of order n, then; $T^{*2n} T^{2} (T^{*n}T)^2 = (T^{*n}T)^2 T^{*2n} T^2.$ Hence; (T/M)² {(T/M) (T/M)² (T/M)(T/M)² =(T/M) $(T/M)^2\{(T/M)$ $= (T^{*2n}/M) (T^{2}/M) \{ (T^{*n}/M) (T/M) \} \{ (T^{*n}/M) (T/M) \}$ $*^{n}T)^{2}/M$ {T $^{2}/M$ } {(T {(T (T/M) $^{2}(T/M)$ $*^{2n}(T/M)^2$ $*^n/M$) Thus T/M \in (BO) of Theorem 2. If $T \in B(H)$ is in Class (Q) of order n, then Т (BO) of order Proof. If (Q) of order then Т (T $*^nT)^2$ post multiplying both sides by T *2n $T *^{2n}T *^{2} T *^{2n} T *^{2n} T *^{2n} T *^{2n}$ $T *^{2n}T *^{2} T *^{n}TT *^{n}T = (T *^{n}T)^{2} T *^{2n}$ $T^{*2n} T^{2} (T^{*n}T)^{2} = (T^{*n}T)^{2} T^{*2n} T^{2}.$ Theorem 3. Let S, $T \in (BQ)$ of order n. If both S and T are commuting, then STis in (BQ) of order Proof. $(ST)^{*2n}$ $((ST)^{*n}$ $(ST)^2$ $=S^{*2n}$ T $*^{2n}$ S² T 2 ((ST)*ⁿ (ST))((ST)*ⁿ(ST)) $=S^{*2n} T^{*2n} S^2 T^2 ((S^*T^{*n})(ST))((S^*T^{*n})(ST))$ $=S^{*2n} T^{*2n} S^2 T^2 S^{*n} T^{*n} STS^{*n} T^{*n} STS^{*n} T^{*n} ST$ $= S^{*2n} T^{*2n} S^2 T^2 S^{*n} ST^{*n} ST^{*n} ST^{*n} T$ $=T *^{2n} T *^{2} S*^{2n} S^{2} S*^{n} SS*^{n} ST *^{n}TT *^{n}T$

 $T = {}^{2} S^{*2n} S = {}^{2} (S^{*n}S)^{2}T$

© OCT 2022 | IRE Journals | Volume 6 Issue 4 | ISSN: 2456-8880

 $=T^{*2n} T^{2}(S^{*n}S)^{2} S^{*2n} S^{2} T^{*n} TT^{*n}T$ (Since $S \in (BQ)$ of order $= (S^{*n}S)^2 T^{*2n} T^2 T^{*n} TT^{*n}TS^{*2n} S^2$ $=(S^{*n}S)^2$ T $*^{2n}$ T 2 (T $*^nT$)² S^{*2n} S 2 $=(S^{*n}S)^2 (T^{*n}T)^2 T^{*2n} T^2 S^{*2n} S^2 (Since T \in (BQ))$ of S^{*2n} $=((S^{*n}S)(T *^{n}T))^{2}$ T *2n 2 *2n $=((S^*^nT)^n)^n$ $*^{n})(ST))^{2}$ S^{*2n} T $(ST)^{*2n}$ $((ST)^{*n}(ST))^2$ $(ST)^2$ Thus STof \in (BQ) order Theorem 4. Let $T \in B(H)$ be a class (BQ) operator of order n such that T = CT *nC with C being a conjugation on H. If C is such that it commutes with T T^{2} $*^{n}T)^{2}$, and (T then T (Q) operator of order Proof. Let $T \in (BQ)$ of order n and complex symmetric, then we have; $T^{*2n} T^2 (T^{*n}T)^2 = (T^{*n}T)^2$ *2nT Т *nC. and = CT hence; $T *^{2n} T ^{2}(T *^{n}T)^{2} = (T *^{n}T)^{2} T *^{2n} T ^{2}$ $T *^{2n}T *^{2}CTCCT *^{n}CCTCCT *^{n}C = (T *^{n}T)^{2}CTCCT *^{n}$ **CCTCCT** T * 2n T 2 CTT * n TT * n C = (T * n T) 2 CTT * n TT * n C $T^{*2n} T^2 CT^2 T^{*2n} C = (T^{*n}T)^2 CT^{*n}TT^{*n}TC$ $T^{*2n}T^{2}CT^{*2n}T^{2}C = (T^{*n}T)^{2}C(T^{*n}T)^{2}C.$ C commutes with T *2 T 2 and (T *T)2 thus we get; $T *^{2n}T *^{2n}T *^{2n}T *^{2n}T *^{2n}T = (T *^{n}T)^2 (T *^{n}T)^2.$ implies which $T^{*2n}T^2 = (T^{*n}T)^2$ and hence $T \in (Q)$ of order n.

REFERENCES

- [1] Jibril, A.A.S.., On Operators for which $T^{*2}(T)^2 = (T *T)^2$, international mathematical forum, vol. 5(46) ,2255-2262.
- [2] S. Paramesh, D. Hemalatha and V.J. Nirmala., A study on n-power class (Q) operators, international research journal of engineering and technology, vol.6(1), (2019), 2395-0056.
- [3] wanjala Victor and A.M. Nyongesa., On (α, β) class (Q) Operators, international
 journal of mathematics and its applications, vol.
 9(2) (2021), 111-113.
- [4] Wanjala Victor and Beatrice Adhiambo Obiero., On almost class (Q) and

- class (M,n) operators ,international journal of mathematics and its applications ,vol . 9(2) (2021), 115-118.
- [5] Wanjala Victor and Beatrice Adhiambo Obiero., On class (BQ) operators, Global Journal of Advanced Research, vol. 8(4) (2021), 118-120.