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Abstract- In the aftermath of severe rains, it is usual 

for locust outbreaks to begin well away from human 

settlements. In light of the pressing need to 

undertake such surveys, unmanned aerial vehicles 

(UAVs), often known as drones, have been proposed 

as a potential means of scanning areas and 

discovering major locust concentrations. UAVs are 

small aircraft that fly through the air and collect 

data. Swarms can be prevented from developing and 

migrating to feed on large areas of crops by 

employing this method to determine where sprays 

should be applied as soon as possible after they have 

been formed and travelling. This review provides a 

quantitative overview of machine learning (ML) 

applications and research in locust management, 

focuses on these applications and research in locust 

management. We believe this is because the 

concepts of locust control and related notions in 

image processing hold a great deal of promise. 

 

Indexed Terms- Agricultural Crops, Locusts, 

Machine Learning, Deep Learning 

 

I. INTRODUCTION 

 

Pests such as the locust and the grasshopper have 

been wreaking havoc on crops and endangering 

human lives for millennia, and their devastation has 

been documented in both ancient and contemporary 

literature [1–4]. The gregarious phase of pest locusts 

and grasshoppers, during which they can move large 

distances and inflict severe damage to crops, 

pastures, and other green plants [5,6], is particularly 

dangerous. Locusts have a unique advantage over 

other insects in terms of colony growth because of 

their quick expansion. During the solitaire period, 

locusts play an important part in the ecology of the 

environment. Land management has an impact on the 

dynamics of locust populations as well [7, 8]. If the 

reader is interested in locust phase polyphenism and 

population density studies, they should refer to [8–

11]. 

 

One of the most damaging species, the desert locust 

(Schistocerca gregaria), has been responsible for 

devastating outbreaks and plagues in the twentieth 

and twenty-first centuries [4,12]. When the desert 

locust is at its lowest density, it can be found at low 

densities in a 16 million km
2
 range spanning from 

Africa to Asia [13]. In areas [14], the desert locust 

breeds sequentially as it migrates downwind [15]. A 

further example is the rapid invasion of Moroccan 

locusts in Sardinia, Italy, during the summers of 2019 

and 2020, which caused hundreds of hectares of crop 

damage [16-18]. A number of large-scale and small 

outbreaks of distinct locust species around the world 

have demonstrated that locust pests constitute a threat 

to food security, as well as the devastation caused by 

their presence and the importance of good locust 

management services. 

 

Infestations can be long-term (e.g., grasshopper 

infestations in Africa Sahel and grasshopper/locust 

outbreaks in China) or cyclical (e.g., plague locust 

and desert locust infestations in Australia)[4]. Locust 

outbreaks have a negative influence on a variety of 

areas, including food security, land management, and 

natural environment. These range from the complete 

loss of grazing crops and fields to the negative 

consequences of insecticides used to combat the 

infestation, among other things. The short-to long-

term consequences of crop damage and chemical 

contamination as a result of control measurements are 

particularly detrimental [4, 19]. 
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II. LOCUST MONITORING SYSTEM 

 

Plant protection professionals collect data on locust 

kinds, instars, and populations in the field for 

conventional locust monitoring systems, which are 

then used to identify the insects. As a result of these 

constraints, several researchers [17,18] have 

increased their monitoring scales. The monitoring of 

individual locusts and locust populations is now done 

on a regional scale rather than on a quadrat scale, as 

was formerly done. In order to compensate for the 

shortcomings of conventional approaches [19-23], 

these researchers have turned to observation 

technologies for assistance. Several outstanding 

findings have been reported by multiple researchers 

[22] as a result of their efforts.  

 

Bryceson and Wright [23] showed simulation model 

on locust breeding is able to efficiently substitute 

missing ground survey data, which was first proposed 

by Bryceson and Wright in 1986 and first 

implemented in 1989. According to Bryceson et al. 

[24], data was used to identify semi-arid areas in 

southwest Queensland as likely hotspot locations for 

outbreaks of the Australian plague locust.  

 

Desert locusts in dry and semi-arid habitats are being 

monitored daily by Waldner et al. [25], who created a 

colorimetric translation from spot-vegetation and 

moderate resolution imaging spectroradiometer data 

that helps in monitoring. This method is considered 

to be accurate in breeding locations, it was found to 

be less accurate when used in winter breeding areas. 

According to the research team [25], the spatial 

resolution is coarse for fragmented patterns. As a 

result of their findings, they devised a random forest 

approach based on landscape membership for 

assessing the hydrological regime and locust 

structure. The moisture present in the soil is used by 

Gómez et al. [26] for extracting the temperature, soil 

moisture, leaf area, root zones in order to investigate 

their correlations with desert locust species 

occurrences. When dealing with the locust pandemic, 

it is not enough to merely build new satellite remote 

sensing monitoring tools to keep track of the situation 

on the ground. Because of interference from orbits 

and weather, it is hard for remote sensing satellites to 

match the timeliness and duration requirements of 

surveillance, which are imposed by these systems. 

If satellite remote sensing technology is to be used to 

monitor and issue warnings for locust plague 

outbreaks, it must be able to recognise the 

relationship between the density of locusts and the 

structural changes associated with the locust by 

observing vegetation and hydrothermal growth 

conditions at different locations. To accomplish this, 

a large volume of locust observation data at the 

quadrat-scale is required. To fully comprehend the 

mechanics of locust plague incidence and the driving 

variables that cause them, observational data from a 

small number of locust colonies is also required. As a 

result, developing rapid and accurate sample-scale 

locust information collection systems is critical for 

understanding the causes and processes of locust [27] 

and offering accurate and timely warnings. 

 

A significant benefit of computer vision techniques, 

which have improved rapidly in recent years [28-31], 

has been the improvement in insect monitoring and 

identification. Using scale-invariant feature [32], 

locust were all identified with high accuracy. In the 

case of pests, Cai et al. [33] used eigenvalues from 

leaves nibbled by pests to detect eigenvalues and then 

used backpropagation (BP) neural networks to 

construct an identification model.  

 

Zhang [34] classified pests using neural network 

classifier, and the results showed that the classifier 

was 85.70% accurate. An image processing technique 

that dynamically extracts colour, area, and 

morphological information from photos was used to 

identify locusts, and population densities were 

calculated using this technique. When identifying 

locusts, Xiong et al. [36] used near-infrared 

spectroscopy and hierarchical clustering to build a 

model that they called the Xiong model. This method 

is used for the rapid detection of locusts in complex 

ecosystems with interwoven plant life, mud layers, 

and rocks. They calculated the accuracy of this model 

to be 91.67%. 

 

The researchers at Chen et al. [37] employed deep 

learning in conjunction with other techniques like 

feature learning and classification to develop a pest 

identification system that was able to recognise 16 

different species of common pests. The 

recognizability accuracy of the modelled approach 

was tested in light traps and varied from 66.00 to 
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90.00% in natural circumstances. According to 

Thenmozhi et al. [38], CNN model (Table 1) was 

developed using three publicly accessible insect 

datasets and attained accuracy rates of 96.75%, 

97.47%, and 95.97%, respectively. Most of these 

investigations were concerned largely with obtaining 

various types of insect counts, which was the primary 

goal for the bulk of these investigations. It is 

uncommon to see field experiments on the automatic 

identification of locust types and stages in their 

various stages. 

 

Table 1: Locust Management System 

Model Accuracy 

AlexNet 73.68% 

ResNet18 67.60% 

GoogLeNet 69.12% 

ResNet50 80.84% 

VggNet 80.70% 

 

III. IMPORTANCE LOCATING THE 

INFESTATIONS OF LOCUST 

 

Other countries, such as China and Argentina, have 

effectively implemented locust prevention strategies. 

By knowing when and where infestations are most 

common, it has become easier to locate localised 

infestations in such a large area. As a result of the use 

of a decision support system (DSS) in locust 

management, forecasters, operations, and field 

personnel are able to make better decisions about 

when and where they should conduct surveys and 

deploy control measures. 

 

The DSS is based on an open plains habitat map that 

is computer-based and contains layers of data. A 

rudimentary map can be updated for the most recent 

locust outbreaks, as well as past outbreaks dating 

back to 1970. Wetness distributions in this region can 

be derived from Bureau of Meteorology 

interpolations. There is more importance placed on 

whether or not the rainfall is sufficient to keep the 

grass green and the locusts alive than on the amount 

of rainfall itself. For grass response, 40 mm of rain is 

required in central Queensland for grass response. 

However, 25 mm of rain is sufficient in south-west 

Queensland where rain drains off from the rocky 

areas onto neighbouring grassy depressions.  

During the two months it takes locusts to complete 

their life cycle in the summer, long-lasting grasses 

such as Aristida and Astrebla species remain green in 

both regions [39, 40]. It has been replaced by 

improved pastures or crops, and two big rainfall 

events are necessary for each generation of locusts in 

the temperate agricultural zone regularly invaded by 

locusts [41]. The DSS takes these distinctions into 

account since they are crucial for the simulation of 

growth and survival. 

 

The optimal time of year to conduct a survey to find 

huge populations of locusts depends on the 

development of locusts after rain. Before accurate 

projections of spring hatching could be established, 

particularly in the subtropical interior areas of the 

Australian plague locust, more detailed research was 

needed [42]. It was shown that a greater 

developmental temperature threshold was to blame 

for the embryonic diapause. By autumn, the 

temperature barrier for stage IVc (approximately 

45% of development) has risen from 16 degrees 

Celsius to as high as 26–32 degrees Celsius.  

 

Instead of using ambient temperature as in 

conventional day-degree models, DSS locust 

development models use day-degrees of locust body 

temperature. Models for locusts incorporate body 

temperatures since locusts can bask and boost their 

body temperatures by 10–15 degrees Celsius over 

ambient [43]. This data is useful because surveys are 

carried out at times and places where locusts are most 

likely to be present. Many infestations are discovered 

by landowners after they have been reported, despite 

the fact that models can help predict some 

infestations. The early detection of small locust 

infestations requires regular contact with landowners 

who will alert authorities if they observe the pests. 

 

For early intervention to be effective, accurate data 

cannot be acquired quickly enough. To conduct 

surveys, field workers can travel across state lines 

without restriction. Every day, survey data is entered 

onto palmtop computers and emailed to headquarters, 

where it is analysed. Our data quality and timeliness 

are unmatched by any other pest management 

company. It is possible to use the DSS to prioritise 

survey and control activities in eastern Australia for 

headquarters staff to use. The highly-trained field 
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base officers in charge of their region collaborate to 

make decisions on control actions. If the locust 

population is manageable, field officers move 

immediately to build a temporary control base. 

Because of the devolution of authority to regional 

employees, control activities can begin as soon as 

locusts are spotted. 

 

IV. VARIOUS LOCUST CONTROL 

TECHNIQUES 

 

It was not a long before Symmons had a major 

impact on how we control our systems. The New 

South Wales Department of Agriculture (NSWDA) 

implemented undiluted chemical aerial spraying [44]. 

It has become increasingly vital for the APLC to 

employ ULV sprays in the parched interior, where 

water is scarce. Apply water-based sprays early in the 

morning, and space them at least 25–30 metres apart. 

If there is a light to moderate breeze, the APLC has 

developed ULV spraying techniques that allow 

spraying at intervals of 50–100 m, with the spraying 

continuing throughout the day if there is sufficient 

breeze [45] [46]. The use of wider track spacings and 

continuous spraying throughout the day enabled 

preventive control. 

 

Landowners and aircraft ULV spraying were utilised 

in New South Wales agriculture to reduce nymphal 

bands and prevent large, dense adult swarms, 

particularly those that were close to trees [44]. 

Nymphal populations were quickly reduced by APLC 

aircraft, especially in densely packed bands that 

could be seen from the air. In order to ensure that a 

considerable number of adults were treated, the 

minimum density for swarm control was reduced 

from high density (50–100/m2) to medium density 

(10–30/m2). Low density swarms (4–10/m2) require 

treatment on occasion in order to achieve efficient 

preventive control in the interior. Other important 

considerations are limiting the impact on the 

environment and the economy. The APLC is now 

creating an environmental management system 

(EMS) to reduce these costs and demonstrate 

accountability to stakeholders and other interested 

parties. The application of pesticides in the field 

necessitates substantial training for field workers to 

minimise operator health and safety hazards and 

environmental impacts. 

The results of this study can be used to apply 

appropriate actions when adverse effects in 

invertebrates and vertebrates are detected. Pesticide 

application has been transformed thanks to the 

widespread adoption of spray planes outfitted with 

DGPS devices. Sprays are guided by the DGPS to 

ensure that the least amount of pesticide is applied 

exactly where it is needed. Environmental and 

consumer costs have been reduced by using the 

lowest effective dose for locust control. It is possible 

that within a few days, nymphal bands that had 

previously been in areas where the insecticide was 

not applied will march into sprayed areas and pick up 

deadly amounts of the poison and perish. Because 

only a small portion of the target area is actually 

sprayed, aircraft spray duration and pesticide use are 

greatly reduced. 

 

Due to the anticipated future restrictions on 

chemicals, a biological insecticide was predicted to 

become increasingly important in their place. The 

Locust and grasshopper biocontrol committee 

(LGBC) was formed in 1997 to commercialise 

Metarhizium for locust control after the fungus was 

shown to be so promising in the field of scientific 

research. In 2000, this locust biopesticide was used to 

treat over 25 000 hectares of locust bands in the 

world for the first time in practise. Metarhizium was 

found to be particularly beneficial in the treatment of 

environmentally sensitive areas, organic properties, 

and areas where landowners were going to put their 

animals or products on the market. Because of the 

increased demand for organic beef in Asian markets, 

it is becoming increasingly difficult to control the 

locust source areas in western Queensland and 

northern South Australia with only insecticides. 

 

V. STUDIES ON LOCUSTS OUTBREAK AND 

PREDICTION OF HATCHING 

 

Researchers in this area are interested in predicting 

locust outbreaks or the commencement of egg-laying. 

Even while prior measurements, historical data, and 

monitoring are an important part of this research, the 

focus here is on the future instead of the past, as it 

was previously.  

 

While population dynamics are still important for 

locust outbreak prediction, Rosenberg [50] says that 
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changes in precipitation and vegetation can now be 

used to detect swarming and plague activity. Long-

term forecasts based on historical data, climate, pest 

frequencies and estimated anomalies; short-term 

forecasts of up to three months are based on the 

combination of these elements. Using the FAO 

SWARMS, researchers can perform large-scale 

analyses of the entire desert locust distribution area, 

for example. Short-term forecasts are handled 

nationally using the Ramses system, which allows for 

comparisons between the current month and the prior 

year and between the current month and the previous 

year [50]. 

 

An introduction to GIS-based operational forecasting 

and monitoring of desert locusts can be found in 

Healey et al. [51]. Using remote sensing to collect 

weather and habitat data will be increasingly 

important in the future, say the scientists. Burt et al. 

[52,113] recommended using Meteosat IR data for 

the estimation of rainfall using the temperature on 

cloud and enhance the forecasting process for 

Senegalese grasshopper outbreaks in the early season. 

Even if we employ this strategy, it is probable that 

the Senegalese grasshopper will hatch in 2–3 weeks. 

According to a study conducted by Todd et al. [54], 

climate variability can affect brown locust outbreaks 

in southern Africa. There was a correlation between 

brown locust infestations and La Nina events, as well 

as increased December rainfall. According to the 

study conclusions, models that incorporate high-

frequency variability and climate indices have a lot of 

opportunity for improvement.  

 

Ceccato et al. [55] studied the desert locust that 

focused on the conditions that allowed the outbreak 

to take place. According to the researchers, rainfall 

estimates were used to predict the possibility of 

future desert locust outbreaks. For their research, they 

examined the early warning system for desert locusts 

and evaluated the potential of novel climate 

prediction methodologies to help predict desert locust 

growth and mobility.  

 

According to IRI projections for desert locust 

development, environmental factors can be correctly 

predicted in order to lengthen response times for 

additional reactions and prepare for management 

operations if necessary. A long-term forecast of 

rainfall is needed in order to accurately predict a 

locust outbreak. Ceccato et al. [56] were unable to 

accurately anticipate seasonal rainfall in North Africa 

because of the unexpected frequency and intensity of 

midlatitude storms. Rainfall forecasts [57] can be 

more accurate when oceanic conditions in the 

atmospheric circulation change more slowly. 

 

Piou et al. [58] employed a prediction approach in 

Mauritania desert locust habitat, combining historical 

field survey data with NDVI data to predict future 

locust populations. Savitzky-Golay filtering of the 

NDVI time series was used to smooth the data, and a 

total of 27 vegetation metrics were produced prior to 

the date of observation. Prior to conducting a field 

investigation, NDVI values were calculated for a 

range of different time intervals to prepare for the 

study. The researchers used a logistic regression 

model to see how well each metric was linked to the 

positions of the ground control points they were 

testing on. They discovered that NDVI changes that 

occurred between 32 and 48 days before a locust 

infestation were the most accurate predictors of an 

infestation. Following the findings, it is possible to 

forecast the existence of locusts during remission 

times by looking at measures that indicate vegetative 

change in the environment. 

 

Piou et al. [58] discovered a relationship between the 

quantity of mean vegetation and the locust at the 

local scale, even when geomorphological variables 

were not taken into account. Topographical features, 

on the other hand, were responsible for determining 

the greatest NDVI. Therefore, Piou et al. [58] 

propose that the development of a locust population 

is linked to the development of vegetation; they also 

assert that rainfall; and they conclude that better 

locust management, according to the authors, 

requires technologies that translate normalised 

difference vegetation index (NDVI) data into 

predictive presence-absence maps. 

 

As a result of the research conducted by Tronin et al. 

[59], the locust hazard index (LHI) for the Italian 

locust has been established and applied. The LHI 

worked admirably in both instances and, as a result, 

may be used as a forecasting tool in the future. 

Taking this into consideration, Tronin et al. [59] 

developed a threshold for LHI to assess the outbreaks 
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in the Siberian research area. When it came to 

European research, LHI, on the other hand, was a 

complete failure. To assess the accuracy of the 

forecasts, researchers in both locations looked at false 

alarms and epidemics that had gone unnoticed. It was 

determined that LHI failed to perform effectively 

with regards to its size and the variety of landscapes, 

biomes, and climatic variables that it contains. 

 

According to Veran et al. [60], the geographic and 

temporal locust dynamics can be modelled using 

MODIS data in order to predict the varying 

proportions of woody and herbaceous plants in a 

given location. Over much of eastern Australia, 

rainfall and land cover variables appear to be the 

most efficient predictors of outbreak geographic 

variability. According to their findings, the 

researchers concluded that hierarchical spatial models 

can be used to improve the prediction of locust 

outbreaks in the future. When Zheng et al. [61] 

developed a forecast model for the Chinese province 

of Xinjiang, they used geographic information 

systems (GIS) to incorporate monthly average 

temperatures, relative humidity, elevations, slopes, 

NDVI and PH data. According to the findings of the 

study, adults and nymphs have a different 

relationship with the NDVI index. The best 

prediction performance was achieved by nymphs (R2 

= 0.461), demonstrating how dependent this life stage 

is on the surrounding environmental conditions [62]. 

 

In addition to rainfall and vegetation, soil moisture 

must also be taken into consideration while 

formulating locust projections. Crooks and Cheke 

[63] explored the suitability of C-band SAR data for 

soil moisture retrieval in brown locust life cycle 

modelling, rather than depending on rainfall 

estimations for soil moisture retrieval. It will be 

crucial in the development of SAR images to collect 

data on a large enough scale and in a timely manner 

in order to forecast the weather.  

 

It has been modelled by Meynard et al. [64] that 

climate change scenarios could alter the geographic 

distributions of locust subspecies, resulting in 

ecological niche changes between desert locust 

subspecies from the South and North. With the use of 

a variety of SDMs and climate parameters, the 

scientists arrived at the conclusion that there was 

significant niche conservatism between the two 

subspecies studied.  

 

During the course of their research, Piou et al. [65] 

investigated how the presence of desert locusts in 

recession areas affected the growth of the normalised 

difference vegetation index, rainfall, and land surface 

temperature. When each component is examined 

separately, as the authors did, desert locust 

occurrence can be explained and predicted using 

statistical analysis of each variable. 

 

VI. DAMAGE AND LOSS ASSESSMENT 

STUDIES 

 

In comparison to healthy vegetation, stressed or 

wounded vegetation has lower reflectance. Due to a 

decrease in chlorophyll, plants that are getting 

stressed are detected using edge spectrum and can be 

distinguished from healthy plants. There is a 

considerable decline in green vegetation in both the 

VI and high-resolution SAR images, respectively. In 

China, studies on damage assessment have mostly 

focused on migratory locusts, which are a major 

source of concern. In these experiments, researcher’s 

analysed vegetation patterns prior an outbreak, 

allowing them to identify the areas that had been 

most badly harmed. Evidence for a causal 

relationship between locust swarms and damaged 

vegetation has relied primarily on previous 

knowledge without involving factors. These studies 

of vegetation loss could be classified as local case 

studies with a limited geographic scope as opposed to 

more comprehensive studies. Ma et al. [66] 

investigated the relationship between biomass and 

leaf area index (LAI) measurements from Landsat 

during the presence of locusts. 

 

Weiss [67] also evaluated MODIS 1 km for 

composite products that helps in mapping the damage 

produced by Australian plague locust nymph bands in 

order to better understand the extent of the 

devastation. Statistical analyses conducted prior to, 

during, and after the banding experiment revealed no 

statistically significant relationship between the 

extent and intensity of damage to vegetation. Weiss 

asserted that the spectral resolution and coarse spatial 

nature and temporal compositing procedures 
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employed in their creation, meant that nymph bands 

feeding on plants could not be detected. 

 

Additionally, Hunter et al. [68] investigated 

Australian plague locust bands that were detected 

from an aeroplane in addition to satellite-based 

analyses. It is possible to observe clearly in RGB 

photographs the locust nymphs accumulation and the 

injured vegetation. Using VHR satellite data, as well 

as unmanned aerial vehicles (UAVs) and high 

spatial-resolution sensors, a large aggregation of 

locusts and damaged plants should be geographically 

resolved. 

 

VII. LOCUST MANAGEMENT 

 

During the last few years, remote sensing has made a 

substantial contribution to the management of locust 

populations. A transition has occurred from single-

picture land cover analysis to time-series based 

categorization in order to obtain findings for a variety 

of time intervals and, thus, to allow for long-term 

habitat and species distribution measurements. 

 

Second, a district was established to manage the 

monitoring of habitats. According to Cracknell [69] 

in 1991, direct identification of habitat changes is 

either impossible or only plausible with a large 

amount of time elapsed.  

 

Crooks and Archer [70] report that soil moisture data 

was either missing or restricted to operating bases in 

2002. We can see from what we learnt in 2008 that 

there was still a great deal of confusion about the 

relationship between acridine danger and 

environmental monitoring at the time of the study. 

An era of remote sensing-based locust control is 

about to begin, thanks to recent advances in satellite 

images and the availability of new datasets, 

methodological tools, and computing power, which 

are working together to overcome these restrictions. 

The advent of MODIS data, which has increased 

spatial resolution (250–1000 m) and spectral 

resolution (36 channels), as well as a high temporal 

frequency, has aided and improved locust’s 

management (daily). Since then, remote sensing-

based research has centred on these challenges, in 

addition to analysing the temporal scale and 

statistical association between locusts and prior 

conditions. 

 

To track vegetation changes over time, desert locust 

management relies primarily on the use of greenness 

maps, which have been shown to be effective. 

According to Piou et al. [58], using secondary 

measures based on time series data, it is possible to 

make an accurate estimate of the desert locust 

presence in a given area. This makes it possible to 

plan field surveys more effectively. Researchers have 

been able to explore the association between 

numerous ecological variables and the presence of 

locusts (e.g., EVI, GPP, FPAR, and LAI) by utilising 

well-established Analysis-Ready Data Sets based on 

MODIS data as a basis (ARD). During that time, 

components related to monitoring, prediction and 

early warning, have gained in importance as a result 

of advancements in rainfall calculation and weather 

forecasting, as well as breakthroughs in weather 

forecasting. 

 

Gómez et al. [52] reported an encouraging strategy 

that asserted the value of soil moisture data, which 

was widely praised. As a result, Escorihuela et al. 

recommended the use of 1 km moisture in warning 

systems [51], which was accepted by national locust 

centres and the DLIS-FAO in particular. It has been 

modelled by Piou et al. [54] that employing soil 

moisture as a typical technique for preventive locust 

management could be beneficial. Desert locust 

incubation durations are brief, necessitating the 

availability of near real-time (NRT) records for 

appropriate analysis and follow-up operations in 

order to be effective. This is a demanding task, made 

even more difficult by the sheer expanse of the area 

that needs to be seen and recorded. Table 2 shows the 

dynamic indicators for studying locust outbreak. 

 

Indicators 
Spatial 

Resolution 

Temporal 

Resolution 

Dynamic 

indicators 

PREC 
0.05° (~5 

km) 
daily 

SM 

0.1° (~10 

km) 
hourly 

0.03° (~3 

km) 
daily 

NDVI 1 km daily 



© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880 

IRE 1703976          ICONIC RESEARCH AND ENGINEERING JOURNALS 19 

LST 1 km daily 

Static 

indicators 

SND 

250 m 3-year 
CLY 

SLT 

CRF 

LULC 100 m 5-year 

DEM 30 m - 

 

VIII. FUTURE WORK 

 

It is necessary to have a complete pipeline in order 

for these stand-alone solutions to function properly. 

The development of an app that will allow 

entomologists to report locust sightings and assess 

concentrations of these invasive insects will be 

beneficial to the scientific community. In their 

current state, the models are far too large to be run on 

a mobile device, but work is being done to reduce 

their size so that they can only be run on mobile 

devices. The lack of an internet connection would 

allow this technique to be used in rural areas, where 

locusts are most numerous, without the requirement 

for a network connection. More research could be 

conducted to ensure that this strategy is effective with 

a greater diversity of locust species. 

 

Because of the comparable instar growth of other 

grasshopper and locust species, it should theoretically 

be compatible with them as well. Once the 

information has been fully tested, it is possible to 

develop a categorization system for locusts and 

grasshoppers based on it. Even while it is capable of 

producing exceptional results, the outcomes are 

frequently jumbled and degrade the image quality, 

making it impossible to categorise the photographs 

taken. Because machine learning algorithms are 

incredibly difficult to train, their outputs may be 

unpredictable. 

 

It is feasible to use the skills learned from this job on 

a variety of animals after being trained. Because there 

are apparent differences between different ages in the 

majority of animals, age categorization can 

theoretically be applied to every animal. Another 

possible application for this geo-tracking device, as 

well as others of similar design, is the tracking and 

monitoring of migrant populations. Due to the fact 

that animals such as locusts do not have distinct age 

phases, the challenge may need to be changed from 

an age estimation task to a regression task in which 

the numerical value of an animal age is identified, or 

even pooled together for category classification 

purposes. 

 

CONCLUSION 

 

Despite the fact that geomorphological measurements 

and radar-based soil moisture data have been used to 

track locust outbreaks in the past, their application to 

locust outbreaks remains unusual. However, despite 

substantial breakthroughs in remote sensing 

technology as well as broad adoption of this 

technology, the application of machine learning to 

assist in locust epidemic research and management is 

still in its early stages. Over the past 40 years, the use 

of ML for locust management and study has shown 

significant results. Efforts to monitor and anticipate 

outbreaks of the desert and plague locust have 

demonstrated the effectiveness and benefits of 

employing data for saving money and time when 

outbreaks occur. 
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